
THE MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF

KAZAKHSTAN

Kazakh National Research Technical University named after K. I. Satpayev

Institute of Information and Telecommunication Technologies

Department of Cybersecurity, Data Storage and Processing

Keten Timur

Web applications constructor

DIPLOMA WORK

specialty 5B070300 – «Information systems»

Almaty 2019

flpororon arraJrr€a Or.rera no4o6nr Hayunttrr pyKoBoA[ITeJIeM

3aRnlno, qro s ogHaKouulcr(-acr) c flolnrru orqeroM nopo6nn, xoroprrfi 6rIn creHepl4poBaH Clacreuolt
BbrffBJreHHr r{ npeAorBpalqeHnff nflarvara B orHoueHula pa6ottt:

Anrop: Keten Timur

Hageauue: Web application constructor

Koop4nnarop : Epcynran Pacxyl6ex

KoaQQuquenr no4o6us 1:3,1

Koe$Qnqnenr no4o6u s 2:0,3

Tpenora:0

Ilocae aHaJIn3a Orqeta nogo6nn Koncrarrlpym cfleAyroqee:
/

/
Mo6"up5n*eHHbre n pa6ore 3ar4McrBoBaHI4q fln"[flrorcfi 4o6pocoeecrHblMu u He o6na4aror

nprnHaKaMr4 n"[arrzara. B ceqsz c qeM, npraaHarc pa6ory caMocroflTelruofr 14 AonycKaro ee K

3aII{nTe;

n o6napyxeHHbre e pa6ore 3ar,rMcrBoBaHr,rq He o6na4aror npH3HaKaMH n"[arllara, Ho I{x qpe3MepHoe

KoJrr4qecrBo Bbr3brBaer coMHeHr4rr B orHoIxeHI4I4 I{eHHocrlr pa6oru no cyqecrBy 14

orcyrcrBpreM caMocroflTeJrbHocrr4 ee aBTopa. B ceqslr c qeM, pa6ora AonlKHa 6rIrr nnosr

orpeAaKTI,IpoBaHa c I{enblo ofpaHl'IqeHl4ff 3aI4MCTBOYaUUilI;

. I o6Hap]DKeHHbre n pa6ore 3ar4McrBoBaHI4t sBllflForc.r ne4o6pocoBecrHblMu u o6lagarcr

npu3HaKaMu nflarr4ara, ililu n sefi coAepx(arcq npeAHaMepeHHble IacKa>KeHIlq reKcra,

yKa3brBarcrqr4e Ha nonbrrKr4 coKpbrrr4fl He4o6pocoBecrHblx garaMctnosaHl4fi. B ceqgu c ueM,

He AonycKan pa6ory K 3alr{I4re.

O6ocHoeanue:

/5 0{, P elt:
II o d nuc u H ayuuo e o py xo eo dumea nflama

ANNOTATION

This diploma is related to the development of a client-server system, is the

creation of an effective and easy-to-use web forms constructor.

As initial materials, web applications of companies and websites were taken for

creating a form for a website of any complexity without much effort. In the process

of creating a web site such programming languages as JavaScript (ECMAScript 6)

were used. I use React and Redux for the front-end, Node.js as the platform, Express

as the web framework, and database.

The client-server system processes and verifies information about users. A full

responsive form builder that interacts with the json endpoint to load and save the

generated forms.

АННОТАЦИЯ

Данная дипломная работа связана с разработкой клиент-серверной

системы которая является создание эффективного и простого для

использования констуктора веб-форм.

В качестве исходных материалов были взяты веб приложения компаний и

сайты предназначенные для созданий формы для сайта любой сложности без

особых усилий. В процессе создания веб сайта были использованы такие языки

программирования как JavaScript (ECMAScript 6). Также React и Redux для

внешнего интерфейса, Node.js в качестве платформы, веб-фреймворк Express и

базы данных.

Клиент-серверная система обрабатывает и проверяет информацию о

пользователях. Польностью гибкий конструктор форм, который

взаимодействует с конечной точкой JSON для загрузки и сохранения

сгенерированных форм.

АҢДАТПА

Бұл дипломдық жұмыс тиімді және қарапайым веб-форматтардың

конструкторын құру болып табылатын клиент-серверлік жүйені құрумен

байланысты.

Бастапқы материалдар ретінде компаниялардың веб-сайттары және веб-

_қосымшалары алынды. Веб-сайт құру барысында JavaScript (ECMAScript 6)

сияқты бағдарламалау тілдері пайдаланылды. Мен React және Redux-ді сыртқы

интерфейс үшін, Node.js-ді платформа ретінде, веб-фреймворк ретінде Express

және дерекқор пайдаландым.

Клиент-сервер жүйесі пайдаланушылар туралы ақпаратты өңдейді және

тексереді. Жасалған пішіндерді жүктеу және сақтау үшін JSON соңғы

нүктесімен өзара әрекеттесетін және толық жауап беретін веб-форма

конструкторы.

CONTENT

 Introduction 7

1 Web-application Basics 8

1.1 Basic functions of Web-applications Constructor 9

1.2 Fundamentals of Web form 10

1.3 Setting system tasks: 17

2 Methods of implementing Information System 18

2.1 Single page application. Advantages of single page application. 18

2.2 Source code editor Visual Studio Code 20

2.3 Node.js software platform 22

2.4 JavaScript library React.js 24

2.5 ASP.NET Core 2.1/2.2 framework 27

2.6 NoSQL database program MongoDB 28

3 Realization software for Information system 31

3.1 Structure of programming realization 31

3.2 Justification of the choice of programming languages 32

3.3 Description of the developed application software 33

3.4 Realization of Information system. Creating a single page application 34

 Conclusion 38

 References 39

 Appendix A

Appendix B

Appendix C

40

41

44

 7

INTRODUCTION

Constructor is a web-based platform for creating enterprise-level software

solutions. Allows creating both simple and fairly complex software solutions right

from the web browser window. Good for creating complex and specialized solutions.

Creating forms for a site is sometimes a complicated and time-consuming

business. Surely, you really value your time and would not want to spend the whole

day doing this. Especially if you do not want to delve into the "technical kitchen" of

cooking forms and learn programming languages. But in order to create the simplest

form, you need to know at least the HTML markup language and the language for

describing the appearance of CSS in order to decorate your form beautifully.

Moreover, to make the form more interactive, add some visual effects or hints, you

should know the programming language.

For many, all this will turn out to be terrible and difficult not only for

application, but also for understanding. What if you just need to make a form and at

the same time, as quickly as possible? And do not want to delve into any

programming at all? How to be? Of course, you can order the development of the

form from the programmer. But there is another option that will help you create your

form without the help of a programmer - Web Forms Constructor.

Web forms have revolutionized many areas, including real estate, medicine,

finance, commerce, and many other industries where documentary work and

documentation play a vital role. Now what was previously done manually on paper is

now easily and quickly done online. .

Actuality of this work is that the scope of the use of the designer of web- forms

is not limited to certain industries or types of sites. They can be used to solve a

variety of tasks in many areas.

The purpose of this work is to create an effective and easy-to-use web-forms

constructor. This tool is ideal for use by anyone who does not want to delve into the

technical parts of the program and understand programming. He will create a form

for the site of any complexity without much effort.

To achieve the purpose, the following tasks are required: a study of the

theoretical part about creating web-applications constructor, analyzing existing web

forms constructor, using the necessary and effective tools and software; optimization

of constructor functions.

 8

1 Web-application Basics

A web-application is a solution based on the interaction between a browser and

a web server. Such applications are cross-platform services accessible from any

modern device and are not tied to the network architecture: you can access them from

a local computer or from a smartphone on the other side of the world using a

convenient protocol, such as the fastest or encrypted.

A web application is traditionally divided into two parts: client and server. The

client part, or simply the client, is the “face” of the application, what the user sees.

First of all, it is responsible for the interface and direct user interaction. To perform

complex operations, the client forms requests to the server and processes responses

from it.

The server part, or server, is the “brain” of the application, where all complex

calculations are performed, volumetric data are stored, and work is coordinated as a

whole. Millions of client systems can simultaneously interact with one server.

This architecture allows you to divide the areas of responsibility between the

two subsystems and make them more independent. Significant advantage of building

web applications to support standard browser functions is that functions should be

performed independently of the client’s operating system. Instead of writing different

versions for Microsoft Windows, Mac OS X, GNU / Linux and other operating

systems, the application is created once for a randomly selected platform and is

deployed on it. However, different implementations of HTML, CSS, DOM, and other

specifications in browsers can cause problems when developing web applications and

subsequent support. In addition, the ability of a user to customize many browser

settings (for example, font size, colors, disabling script support) may prevent the

application from working correctly:

– the web application consists of client and server parts, thereby implementing

the client-server technology;

– the client part implements the user interface, forms requests to the server and

processes responses from it;

– the server part receives a request from the client, performs calculations, then

generates a web page and sends it to the client over the network using the HTTP

protocol.

The web application itself can act as a client of other services, for example, a

database or another web application located on another server. A striking example of

a web application is the content management system for Wikipedia articles: many of

its participants can take part in creating a network encyclopedia using browsers of

their operating systems (be it Microsoft Windows, GNU / Linux or any other

operating system) and without downloading additional executables. modules for

working with articles database. Currently gaining popularity is a new approach to

developing web applications, called Ajax. When using Ajax, web application pages

do not reload entirely, but only load the necessary data from the server, which makes

them more interactive and productive [1].

 9

1.1 Basic functions of Web-applications Constructor

The application is a tool for developing application solutions in web-

technology. Designing screen forms on the web based on the requirements for

automating business processes of the bank provides the ability to organize mobile

workstations for access by end users in any modern browser on any operating system.

A web application is a client-server application in which a client interacts with

a server using a browser, and a web server is responsible for the server. The web

application logic is distributed between the server and the client, data is stored

primarily on the server, information is exchanged over the network. One of the

advantages of this approach is the fact that clients are independent of the user's

specific operating system, therefore web applications are cross-platform services.

Main functions:

– support the development of screen forms on the web using various controls;

– ability to customize the properties of controls (visibility, accessibility,

styling, etc.);

– ability to organize controls on screen form in the web (order of arrangement,

alignment, centering, etc.);

– support for the Eclipse cross-platform IDE development environment, which

allows using a large repository of extensions, including;

– development of screen forms on the web in accordance with the principles of

the model-view-controller design pattern (MVC);

– support for mechanisms for re-using already created screen forms on web;

– deployment (deploy) of developed web-applications on servers.

Web-Application Constructors are services that allow you to create

applications for specific needs (for example, food delivery or taxis) without

programming at all, based on predefined templates with the addition of necessary

widgets and design options.

Web applications require very little disk space (or computing power) on the

client. All the client does is display the data. In many cases, the data is stored

remotely too. As with other cloud computing, this can allow easy communication.

Typical Web Application using:

– the use of web applications brings certain benefits both to website visitors

and their developers. Web applications allow visitors to quickly and easily find the

information they need on websites with a lot of information;

– web applications allow you to collect, save and analyze data received from

site visitors. The web application can be used to update websites with periodically

changing content. The web application frees the web designer from the routine work

of constantly updating the site’s HTML pages [2].

Support the development of screen forms on the web using various controls:

– input field, tables;

– drop-down lists, buttons;

– icons, etc.

 10

1.2 Fundamentals of Web form

At its core, a web form is a specifically restricted area on a website page. In

these areas, the site visitor can enter one or information, as well as select specific

actions from the proposed ones.

The web form on the website is an analogue of a paper form, a questionnaire, a

form and a questionnaire.

Forms have fields to fill out, as well as lists and radio buttons that allow the

user to select one or more items.

The form can be used to receive information from site visitors. For example,

using a web form you can collect personal data, information about orders,

information that is necessary for invoicing, delivery methods, and so on. Visitors are

required to enter various types of information in the form field.

The above information can be set by configuring radio buttons, checkboxes and

drop-down lists and entering information into text fields. It is also possible to specify

the method of collecting information that is entered by site visitors, as well as to

specify the way the results data is displayed on the confirmation page that the user is

viewing.

Placing web forms should be carefully thought out depending on their purpose:

subscription form, order form, callback form or something else. The user should be

comfortable working with the site, and the most important web forms for the

company should be given the opportunity to reach without a scroll. For example, it is

better to place the web login form in your personal account or callback at the top of

the page: it immediately gets into the attention of the visitor - this is how the

company's interaction with a potential client begins. Try to place the most important

information about your product or service, a call to action and a web form to the

site’s “fold line” in order to immediately attract the user's attention.

Web forms in a multi-column format often repel site visitors. Studies of eye

movement - eye tracking (eye-tracking) show that it is more convenient for the user

to “scan” the form from top to bottom than from left to right. Thus, a single-column

web form is the best solution for collecting information.

Each web form has its own structure which depends on the amount of

information needed by the site owner to provide services, sell goods or register for an

event. In this subtle question, it is important to keep the balance of the number of

fields to fill. Much depends on the visual component of your form. Be consistent in

requesting information, build the logic of the form so that the user understands you.

In the table 1.1 we see that main five components of form creation with

descriptions like a structure, label fields and etc.

Help the user fill out the form, add tooltips in the right places, show the

percentage of the form, be sure to sign the input fields. Make your form beautiful,

add animations, remove template fields and make your own, nice and modern, dilute

them with icons - your website visitors will thank you [3].

And the next one table 1.2 two elements of form.

 11

Table 1.1– Form creation consists of five components

№ Component Description

1 Structure This includes the order of the fields, their appearance on the

page in the form, and the logical connection between the input

fields.

2 Input fields They include text fields, password fields, checkboxes, radio

buttons, and any other ways to enter the necessary information.

3 Label fields Indicate what needs to be entered in the fields.

4 Action button By pressing this button, there is some kind of action - for

example, the data is sent to the server.

5 Feedback The user wants to understand whether he has entered the

information correctly - and for this purpose, feedback is used.

Most often, this is a simple text message that notifies you of a

positive result (“Registration completed!”), Or a negative one

(“The number you entered is incorrect”).

Table 1.2 – Forms can include the following elements

№ Elements Description

1 Tips Help the user to understand exactly what to

enter into the form.

2 Validation Help the user to understand exactly what to

enter into the form.

1.2.1 Web form structure and elements.

Web form is one of the types of communication. And, like any conversation, it

should be a logical connection between the user and the application or site being

used. Request only the necessary information.

Make sure you ask the user for really important information. The more input

fields - the worse the conversion rate, therefore, always consider why you need this

or that information, and what it will be used for.

Structure the form logically. Query information logically from the user's point

of view, not the site or database. For example, it would be unusual to first ask the

address of the user, and only then his name.

Grouping related information. Group the information connected logically into

separate blocks. This will facilitate the understanding of what will need to be entered

in a single block, and will speed up the user's “dialogue” with the system. Take a look

at how this works, on the example of the contact information form below.

For example in figure 1.1 we see the accessibility tree of form in HTML page.

The accessibility tree and the DOM tree are parallel structures. Roughly speaking the

accessibility tree is a subset of the DOM tree. It includes the user interface objects of

the user agent and the objects of the document.

Every web form must be wrapped in <form> tags. In most cases, all of the

form fields will be nested between these tags. There are several attributes that may

 12

optional be used with the form element, including: accept-charset: This optional

attribute is used to identify the character encodings acceptable to the server and code

processing form input. If more than one encoding is specified, one space should be

placed between each encoding. If left blank or not provided, the encoding will default

to the same encoding as the document containing the form.

The form elements into which you can enter text are called form fields. The

form fields may already contain their name (Review, Reset, Submit, etc.) or allow

you to enter text. The form fields are essentially text fields, radio buttons, buttons,

and other elements. The choice of certain elements is influenced by the information

that must be obtained from the visitor.

Figure 1.1 – The Accessibility tree

The text box is used to enter text strings. The maximum number of characters

that can be entered in this field does not depend on its width.

Checkboxes are used to select additional items or services. The visitor can

independently uncheck the box or set it. With the help of checkboxes you can set the

ability to select multiple items at once. It should be noted that the flags have only two

values: “set” or “reset”.

As for radio switches, they are used instead of checkboxes in the situation

when a site user has to choose one of several values. One of these switches, as a rule,

is valid by default. Selecting the second switch resets the previous value.

The text area (textarea) is used to enter one or more lines of text. This field

scrolls, which makes it possible to enter texts of various sizes into it.

Text areas have wide application possibilities (for example, using them you can

create guestbook).

A drop-down list (select) is used in case you need to present a list of different

options to the user. The functions of these lists are similar to the functions of

switches, but lists do not take up much space in forms. The drop-down list can be

configured to allow the selection of one value or several. Very often such a list is

used as a drop-down menu in the navigation of an Internet resource.

 13

The button is used to send the completed form when clearing fields or

performing other actions. The visitor only needs to click on one or another button.

In addition, the form may contain a picture that can be used as a button. After

the visitor fills out the form, he needs to click on this picture, and all the information

from the form will be sent to the script that processes the forms:

– using the button, you can change these or other settings. It is possible to use

fonts, colors and tables;

– using the group window, you can isolate a group of elements or text from

other information that is available on the page.

Site visitors may have the ability to send any files to the site. If the form has a

field called “file transfer”, the user can click on the button called “Browse”, select the

desired file and send it.

After you select the type of fields that are added to the form, you can determine

their appearance and purpose. The name of the field and instructions for their use can

be entered into the form. For each field properties can be set. For example, you can

set the length of the text field, specify the default switch, and define values in the

drop-down list.

Next, you need to set validation rules. For example: you can specify required

fields in the form or specify that you only need to enter data of a certain type into

certain fields (for example, only letters or only numbers; enter email addresses;

Entering url addresses). Validation rules ensure that a visitor of a site completes a

form.

After the site user has filled out the form and submitted the data, they fall into a

special script on the server called the form handler. In the form handler, the data can

be saved to a database or sent by email.

If the user has filled out the web form correctly, without errors, then after

sending the data to the server, the user will see the page for successfully filling out

the form or redirecting it to a predetermined page. If the user fills out a form for

polling or voting, then after successfully filling out the form, he will immediately see

a page with general voting results.

1.2.2 Types of Web forms.

Feedback form or contact form is an html form that usually has several fields:

name, e-mail, subject of the message, the text of the message itself and the button

“Send”. After the form is filled in by the visitor of the site and presses the button

“Send”, all the data from the form is sent to the site owner's e-mail. At the same time

the site visitor will not have to open any additional email programs. In addition, using

the feedback form, you do not disclose your e-mail address to spammers.

Feedback forms are one of the most effective modes of communication

between customers and businesses. The customer can provide the the business with

their experiences, requirements or suggestions. Different feedback forms are

available for reaching out to customers.

HTML feedback forms are easier to design and construct with the help of

software tools. Below presented figure 1.2 feedback form example.

 14

Figure 1.2 – Feedback form example

Subscription form. Then send or place a link to the finished form or place it on

your website as easy as a picture. After creating a form, you can, if you wish, create

new or edit existing fields, as well as change the appearance of the form.

A subscription form is a form located on any page of the website or blog where

the users can fill in the fields with their data to receive emails on topics related to

their interests. The primary purpose of the subscription form is opting-in subscribers

to the mailing list. By placing a subscription form on your website, you will provide

your customers with the opportunity to subscribe to electronic mailings or to paper

publications from your website.

In this case, you get a subscriber base, you can unload it at any time for

mailings. All information received through the forms is stored in the system, and also

sent to the email addresses you specify.

Allows simply request an e-mail, or you can ask the users for the parameters

for additional filtering during mailing. For example, the rubric for which a person

wants to subscribe, and perhaps his age and gender. And at any time unload the

subscriber base and make the newsletter.

Order Form. The order form for goods is an ideal option for accepting orders

for small online stores. You do not need to spend time and money on setting up and

maintaining a complex online store. With the help of our online web form designer,

you simply add the required fields to the order form, then paste the form code to your

site and calmly accept orders.

All orders received from the form are stored in our system, and also sent to the

e-mail addresses you specify, and can be exported from the system at any time in

 15

CSV / Excel format for further processing. You can track the status of the order, as

well as add service information on the order.

After creating the form, you can at any time add new fields or edit old ones,

add protection against SPAM, set up validation rules and appearance.

Below in figure 1.3 has shown one example of order form.

Figure 1.3 – Order form example

Application form. You can accept applications for participation or registration

in any event, whether it is an application for participation in a seminar or conference,

or an application for a loan. All application forms are available online 24 hours a day,

7 days a week and 365 days a year. Therefore, your potential customers can apply at

any time convenient for them, they will not even need to leave the site for this.

After creating the form, you can at any time add new fields or edit old ones,

add SPAM protection, set up validation rules and appearance, as well as restrict

access with a password. In figure 1.4 has shown job application form example.

All information received through the forms is stored in the system, and also

sent to the email addresses you specify and can be exported from the system at any

time in CSV / Excel format for further processing.

 16

Figure 1.4 – Application form example

Testing form. In order to better know their visitors and subscribers, more and

more site owners and mailing lists began to use the survey or testing form.

A survey or testing form resembles a voting form and may contain not one

question, but several. In addition, in the survey form, as a rule, there are additional

fields, for example, the name and contact information of the respondent.

Quiz can be called a new effective marketing tool with which you can identify

the needs of the site visitor. Quiz is a step-by-step capture form that helps with each

subsequent question more and more to interest the client, rather than immediately

frighten him off with a questionnaire of 10-20 questions on one page, and finally

leave a request and get his contact information.

Quiz allows consistently more and more closer to bring the client to ensure that

he left the application. Below in figure 1.5 presented example of quiz form.

Quiz or quiz-landing is implemented in a game form, where the visitor is asked

a few questions step by step: Who is he? What does he want? How much is he willing

to spend the money? When?

Quotes are actively used for educational and entertainment purposes, and now

they have gained a pronounced trade effect. The quotes offered a decent, one might

say, “softer” alternative to a more “assertive” filing of the request - to leave a request.

 17

The site visitor answers questions with interest, since he knows that in the end he will

find out, for example, what kind of discount he will receive on a product or service.

Voting form. In order to better know their visitors and subscribers, more and

more site owners and mailings began to use the form for voting.

Figure 1.5 – Quiz form example

As a rule, one question and several answers are selected for voting. The user is

prompted to select one or more options. After the user has voted, the average rating is

calculated for each answer option.

1.3 Setting system tasks:

1. Research and find areas where using web-applications constructor.

2. Analyzing existing web-forms constructor. Comparing them and find useful

elements of this web applications. Making decisions about existing systems

functionality and their strong sides.

3. Using the necessary and effective tools and software. Use a lot technologies

t easy and effective creating, development programming side single page application.

4. Development of web-application constructor. Which allows creating easy

and quickly web-forms for own solutions.

 18

2 Methods of implementing Information System

2.1 Single page application. Advantages of single page application.

Single Page Application - abbreviated SPA. In other words, a SPA is a web

application hosted on a single web page that loads all the necessary code to work.

Along with loading the page itself. An application of this type appeared

relatively recently, with the beginning of the HTML5 era. SPA is a typical

representative of HTML5 applications.

If the application is quite complex and contains rich functionality, such as the

distance learning portal, the number of files with scripts can reach several hundred or

even thousands. To solve the problem of loading a large number of scripts in the SPA

called API called AMD. AMD realizes the ability to download scripts on demand.

That’s is, if the initial page of a one-page portal was required three scripts, they will

be loaded immediately before the program starts. What if when a user clicks on

another page of a one-page portal, then AMD principle will load the script and

markup just before going to this page.

The page of the site that contains all the links to all the CSS, and links for the

scripts necessary for the operation of the SPA, it is commonly called "index.html".

But pages that a user switches within a one-page portal called "modules". Consider

the pros and cons of this approach. Below in figure 2.1 has shown difference between

single page application and any regular website.

Figure 2.1 – Difference of Single page application and regular website

 19

The disadvantages of using SPA are:

– the need to learn JavaScript. Creating a SPA involves a great use of

javascript that leaves an imprint on the architecture applications;

– duplication of controllers and models both on the server and on the client. If

you want to fix something, then it will be necessary to do it at least in two places;

– adding new functionality slows down the work. You need to control the

client and server versions;

– complexity in testing.

And the below in figure 2.2 opposite of above has presented advantages of

single page application.

Figure 2.2 – The advantages of Single Page Application

Principles of any framework that implements the SPA paradigm must adhere to

the following concepts and definitions:

– SPA supports client navigation. All user movements on the module pages

are uniquely recorded in the navigation history, the navigation is “deep”, that is, if the

user will copy and open the link to the internal module page in another browser or

window; it will go to the corresponding page;

Work on a large

number of devices

Rich user interface

(User Experience)

Reducing the

download of the

same content

SPA work great on

devices both

stationary and

mobile. PCs, tablets,

smartphones even

simple phones can

work seamlessly

with sites built on

the principle of SPA.

Since the webpage

is one, build a rich,

rich user interface

much easier. Easier

to store session

information,

manage states

views and control

animations

If a the portal uses

the template, then

along with the main

content of any

pages a site visitor

must download the

markup template.

Its achieved the

highest results

The advantages of Single Page

Application

 20

– SPA is located on one web page, it means everything you need for portal

work scripts and styles should be defined in one place of the project - on a single web

page;

– SPA always keeps the client’s work status in the browser’s cache or

in web storage;

– SPA loads all the scripts required to start the application when

web page initialization;

– SPA gradually loads modules on demand.

Examples of applications built on the principles of Single PageApplication is a

lot. One of the most powerful and well-known is GMail - Google's postal service [4].

2.2 Source code editor Visual Studio Code

Visual Studio Code is a lightweight yet powerful source code editor that runs

on your desktop and is available for Windows, MacOS, and Linux. It comes with

built-in support for JavaScript, TypeScript and Node.js and has a rich ecosystem of

extensions for other languages (such as C ++, C #, Python, PHP, Go).

Visual Studio Code in action:

– intelligent code completion. Code smarter with IntelliSense - completion for

variables, methods, and imported modules;

– optimized debugging. Debugging output is a thing of the past. Debug in VS

code with your terminal tools;

– fast, powerful editing. Code analyzer, multi-cursor editing, parameter hints

and other powerful editing features;

– code navigation and refactoring. Quickly review the source code by looking

at the menu and navigating to the definition.

Visual Studio Code is a source code editor. It supports a number of

programming languages, syntax highlighting, IntelliSense, refactoring, debugging,

code navigation, Git support, and other features. Many of the features of the Visual

Studio Code are not accessible through a graphical interface, they are often used

through a palette of commands or JSON files (for example, user settings). The

command palette is a command line similarity, which is invoked by a keyboard

shortcut.

Visual Studio also allows you to replace the code page when saving a

document, newline characters, and the programming language of the current

document. In figure 2.3 presented user enviroment and interface Visual Studio Code.

Since 2018, the open source Python extension for Visual Studio Code has

appeared. It provides developers with ample opportunities for editing, debugging and

testing code. As of March 2019, through the built-in user interface in the product, you

can download and install several thousand extensions only in the category

“programming languages”. Visual Studio Code is a code editor that supports work

with more than 30 programming languages and file formats, including C #,

 21

TypeScript, JavaScript. Not just a code editor, but a useful developer tool with extra

features [5].

Figure 2.3 – User interface in Visual Studio Code

Visual Studio Code collects usage data (telemetry) and sends it to Microsoft.

Although the provision of data is not mandatory and you may refuse to transfer

personal data, some features, such as personalization, using such data will not be

available to you to disable. Data may be transferred to Microsoft controlled

subsidiaries, subsidiaries, and law enforcement agencies in accordance with the

privacy statement.

Visual Studio Code characteristics:

– free open source text editor;

– it has IntelliSense (but it does not work immediately after installation, if

Visual Studio is not installed, you must configure it to specify MinGW, etc.);

– smaller download size and RAM requirements. IntelliSense requires about

300 MB of RAM;

– works on younger computers. (startup is still slow, especially if PowerShell

is used instead of CMD);

– lower support (open source, so you can change it yourself);

– build tasks depend on the project. Even if you want to build it in a vanilla

configuration;

– mainly used for web development (this applies to all free text editors). They

tend to brag about javascript/html support over C/C ++. Visual Studio demonstrates

Visual Basic/C ++ in other languages;

– lack of good extensions (this is still new, though);

– it is difficult to reconfigure your project / workspace settings;

 22

– cross-platform;

– it has a built-in terminal (PowerShell is too slow on startup);

– this is best for small projects and test code.

VS Code can be used on computers running Windows, OS X and Linux. The

tool was released in the spring of 2015, and constantly updated. During the existence

of Visual Studio Code has expanded its functionality, the list of supported languages

based on feedback and suggestions from users.

The editor is based on open source products, which is sometimes an important

criterion for developers, supports integration with version control systems, a built-in

debugger and the ability to connect external tools [6].

2.3 Node.js software platform

Node.js is a software platform based on the V8 engine (developed by Google

for the Chrome browser that translates JavaScript into native code), which transforms

JavaScript from a highly specialized language into a general-purpose language.

Node.js adds the ability of JavaScript to interact with I / O devices through its API

(written in C ++), to connect other external libraries written in different languages,

providing calls to them from JavaScript code.

Node.js is used mainly on the server, acting as a web server, but it is possible

to develop desktop applications on Node.js (using NW.js, AppJS or Electron for

Linux, Windows and macOS) and even program microcontrollers (for example, tessel

and espruino). In figure 2.4 has shown many way to build an api server (REST api)

with NodeJS. It could be matched to online database store likes MongoDB or

MySQL.

Node.js is based on event-oriented and asynchronous (or reactive)

programming with non-blocking I / O [7].

Figure 2.4 – Node.js application programming interface server

 23

The main feature of Node.js is a software platform below:
– it is simple. Node.js is really very easy to learn, but you should first

understand JavaScript itself, especially its asynchronous concepts;

– it is asynchronous. JavaScript runs in one thread, using events and callback

functions to unload it. It was cool on the front end, it is still cool on the server!

Virtually all objects in Node.js inherit from the EventEmitter class, that is, they are

able to work with events. Read more about it here. If you do not understand the very

concept of asynchrony, take a look here. A huge number of modules and libraries.

The npm package manager ensures the rapid development of the Node.js ecosystem.

Now it has more than 500 thousand open-source packages, and new ones appear

every day. In addition, Node.js has a smart standard library;

– good old javascript. The same one that millions of developers are already

using at the front end. Now they can safely switch to the server-side without learning

a fundamentally different tool. There are differences, of course. First of all, Node.js

has no DOM, cookies and other browser APIs. But there are many own useful

methods and full control over the code execution environment. Here it is possible to

use the most modern features of the language without fear and Babel, without looking

at the limitations. The import system is also different. Browsers are starting to embed

ES6 modules, and Node.js platform uses CommonJS with its require;

– V8 engine. This is an open source project written in C ++, which is being

actively developed and improved by the efforts of thousands of developers. This has

long been an adult serious language that can work for several hours in a row, so it

makes sense to create ready-made compiled code. Modern engines combine

interpretation and JIT compilation (just in time), which makes them very fast;

– node.js platform under the hood. Without going into the subtleties of the

platform, let's take a look at its main parts [8].

Below has shown figure 2.5 Node.js architecture.

Figure 2.5 – Node.js architecture

 24

And here you will find a small tour for beginners under the hood Node.js.

Node.js platform can be installed in several ways: official installation files for

different operating systems; package manager of the operating system; nvm.

There are also several options for deploying applications:

– create a local tunnel using ngrok or localtunnel;

– prototyping and demonstration sites: Glitch, Codepen;

– FAAS - serverless publishing using Serverless Framework or Standard

Library;

– PAAS solutions for every taste: Zeit, Heroku, Azure, Google Cloud;

– dedicated virtual server: Digital Ocean, Linode, Amazon Web Services;

– bare-metal server.

The event loop is a mechanism that accepts callback functions and registers

them for execution at a certain point in the future. It works in the same stream as the

JavaScript code itself. When an operation blocks a thread, the event loop also blocks.

A pool of workers is a performance model that calls and processes individual

threads. Then they synchronously perform the task and return the result to the event

loop. After the loop calls the callback function with the specified result.

In short, the pool of workers can deal with asynchronous I/O operations — first

of all, we interact with the system disk and the network. This performance model is

mainly used by modules like fs (demanding I / O speed) or crypto (demanding on

CPU).

A pool of workers is implemented in libuv, which results in a small delay

whenever Node requires a connection between JavaScript and C ++, but this delay is

barely perceptible [9].

2.4 JavaScript library ReactJS for creating interfaces

ReactJS - open JavaScript library for creating interfaces, which is intended to

solve the problems of partial updating of the contents of the web page, which are

often encountered in the development of one-page applications. Developed by

Facebook, Instagram and community individual developers.

React allows developers to create large web applications. That use data that

changes over time, without rebooting pages. His goal is to be fast, simple, scalable.

React handles only the interface in applications.

Elements are JavaScript objects that are HTML elements. They do not exist in

the browser, they describe DOM elements, such as a div, h1 or button. Components

are React elements written by the developer. Usually these are parts of the user

interface that contain their structure and functionality. For example, such as NavBar,

LikeButton, or ImageUploader.

Properties - component options. They are provided as component arguments

and look the same as HTML attributes. A state is a special object inside a component.

He keeps data that may change over time. Composition - a combination of smaller

components with the formation of more.

 25

Advantages of ReactJS:

– one-way data transfer.Properties are transferred to the component renderer as

properties of the html tag. The component cannot directly change properties.

However, the component may have an internal state. This is the this.state object,

accessible within the component;

– virtual DOM.

React supports a virtual DOM (Document Object Model). It allows the library

to determine which parts of the DOM have changed compared with the saved version

of the virtual DOM, and thus determine how most efficiently update your browser

DOM [11].

In figure 2.6 presented relationship between web page, real DOM and ReactJS

virtual DOM.

Figure 2.6 – React and Virtual DOMs

React components are usually written in JSX - syntax extensions JavaScript,

similar to XML, which allows the use of syntax HTML tags for rendering

components written in JSX compiled into calls to React library methods. Redux is an

open source JavaScript library, designed to manage the state of the application. He

basically used in conjunction with React to create user interfaces. Good for single-

page applications where condition management can become difficult over time.

Three basic principles of Redux:

– the only source of truth. Redux uses only one repository for the entire state.

applications. Since the state is in one place, it calls the only source of truth. The data

structure of the entire storage depends on the developer, but for a real application,

this is usually an object with several levels of nesting;

– the status is read only. According to the Redux documentation, “The only

way to change state - to transfer the action - an object that describes what happened. "

it means that the application cannot directly change the state. Instead of this, It is

necessary to transfer "action" to express the intention to change the state in

repository;

– changes are made by "pure" functions. Redux does not allow state changes

directly. Instead, action describes what changes need to be made. Reducers (reducers)

are functions that handle actions and can make changes to state.

 26

Reducers must be implemented as “pure” functions (pure functions), a term

describing functions that satisfy the following conditions:

– they should not make external calls over the network or database;

– they return a value depending only on the transmitted parameters;

– their arguments are immutable, i.e. functions should not them change;

– a call to a pure function with the same arguments always returns same result;

– these functions are called “clean” because they do nothing only return a

value depending on the parameters. They are independent of any part of the system.

The underlying concept of ReactJS is reusable components. The developer

creates small parts of the code that can be combined to form larger ones or to use

them as independent interface elements [12].

Figure 2.7 – User, ReduxJS and Server Node js conntection

The second argument in ReactDOM.render is the document element that React

will work with. In figure 2.8 presented ReactJS simple code example.

Figure 2.8 – ReactJS simple code example

 27

The names of the components begin with a capital letter. This is important,

since the work will combine HTML elements and elements of React. Lowercase

letters are reserved for HTML. If you try to name an element just a button, when

rendering, the framework will ignore it and draw a regular HTML button.

Each element has a list of properties (attributes), as in HTML. In React, this is

called props. The render function accepts the so-called JSX - this is HTML, placed in

JavaScript and diluted with a special syntax. When processing events, it is important

to understand that all the attributes of the React elements are named with camelCase.

When working with functions, we pass the actual function reference, not the string.

React.js creates a wrapper for the DOM event in the form of its own object in order to

optimize the performance of working with events. Inside the handler, it is still

possible to access all the methods available to the document.

First, the React.js template is defined to create elements from the component.

Indicates where it will be used. For example, inside a call to the render function of

another component or using ReactDOM.render.

The reaction creates an instance of the element and passes it a set of properties

(props), access to which will be available through this.props. These properties are

what we conveyed in the second step.

Since the above is a JavaScript, the class constructor method (if defined) will

be called. React handles the result of the render function call.

2.5 ASP.NET Core 2.1/2.2 framework

The ASP.NET Core platform represents technology from Microsoft, designed

to create various kinds of web applications: from small websites to large web portals

and web services.

On the one hand, ASP.NET Core is a continuation of the development of the

ASP.NET platform. But on the other hand, this is not just another release. The release

of ASP.NET Core actually means a revolution of the whole platform, its qualitative

change. Development over the platform began in 2014. Then the platform was

conditionally called ASP.NET vNext. In June 2016, the first release of the platform

was released. And in May 2018, ASP.NET Core 2.1 was released, which is actually

covered in the current tutorial.

ASP.NET Core is now fully open source framework. ASP.NET Core can run

on top of a cross-platform .NET Core environment that can be deployed on the main

popular operating systems: Windows, Mac OS X, Linux. And thus, with the help of

ASP.NET Core we can create cross-platform applications. And although Windows as

an environment for developing and deploying an application still prevails, but now

we are not limited only to this operating system. That is, we can run web applications

not only on Windows, but also on Linux and Mac OS. And to deploy a web

application, you can use the traditional IIS, or cross-platform web server Kestrel.

Although ASP.NET Core is primarily aimed at using .NET Core, the

framework can also work with the full version of the .NET framework. Due to the

 28

modularity of the framework, all the necessary components of a web application can

be loaded as separate modules through the Nuget package manager. In addition,

unlike previous versions of the platform, there is no need to use the System.Web.dll

library.

ASP.NET Core includes the MVC framework, which integrates MVC

functionality, Web API and Web Pages. In previous versions of the platform, these

technologies were implemented separately and therefore contained a lot of duplicate

functionality.

ASP.NET Core is characterized by extensibility. The framework is built from a

set of relatively independent components. And we can either use the built-in

implementation of these components, or expand them using the inheritance

mechanism, or even create and use our components with our own functionality.

It also simplified dependency management and project configuration. The

framework now has its own lightweight container for dependency injection, and there

is no longer a need to use third-party containers, such as Autofac, Ninject. Although

if desired, they can also continue to use.

The new HTTP pipeline, which is based on Katana components and the OWIN

specification, is now used to process requests. And its modularity makes it easy to

add your own components. To summarize, the following key differences between

ASP.NET Core and previous versions of ASP.NET can be distinguished:

– new lightweight and modular HTTP request pipeline;

– ability to deploy the application both on IIS;

– using the .NET Core platform and its functionality;

– distributing platform packages via NuGet;

– Integrated support for creating and using NuGet packages

– single web development stack combining Web UI and Web API;

– configuration for simplified use in the cloud;

– built-in support for dependency injection;

– extensibility;

– cross-platform: the ability to develop and deploy ASP.NET applications on

Windows, Mac and Linux;

– development as open source, openness to change.

These and other features and capabilities became the basis for a new

programming model [13].

2.6 NoSQL database program MongoDB

MongoDB implements a new approach to building databases, where there are

no tables, schemas, SQL queries, foreign keys, and many other things that are

inherent in object-relational databases.

Since dinosaur times, it has been common to store all data in relational

databases (MS SQL, MySQL, Oracle, PostgresSQL). It was not so important whether

the relational databases were suitable for storing this type of data or not.

 29

Unlike relational databases, MongoDB offers a document-oriented data model,

which makes MongoDB faster, more scalable, and easier to use.

But, even taking into account all the shortcomings of traditional databases and

the dignity of MongoDB, it is important to understand that tasks are different and

methods for solving them are different. In some situations, MongoDB will really

improve the performance of your application, for example, if you need to store data

that is complex in structure. In another situation, it would be better to use traditional

relational databases. In addition, you can use a mixed approach: store one type of

data in MongoDB, and another type of data - in traditional databases. Below ha

shown figure 2.6 MongoDB interface.

The entire MongoDB system can represent not only one database located on

one physical server. The MongoDB functionality allows you to place multiple

databases on multiple physical servers, and these databases can easily exchange data

and maintain integrity.

Figure 2.6– MongoDB interface

Data Format in MongoDB. One of the popular standards for data exchange and

storage is JSON (JavaScript Object Notation). JSON effectively describes complex

data structure. The way data is stored in MongoDB in this regard is similar to JSON,

although formally JSON is not used. For storage in MongoDB, a format called BSON

is used, or an abbreviation for binary JSON. BSON allows you to work with data

faster: faster searching and processing. Although it should be noted that BSON,

unlike data storage in JSON format, has a slight drawback: in general, data in JSON

format takes up less space than in BSON format, on the other hand, this disadvantage

is more than compensated for by speed. New shown in figure 2.7 saved as JSON

format.

Cross Platform. MongoDB is written in C ++, so it is easy to port to a variety

of platforms. MongoDB can be deployed on Windows, Linux, MacOS, Solaris

platforms. You can also download the source code and compile MongoDB yourself,

but it is recommended to use libraries from offsite.

 30

2.7-picture – MongoDB startup_log JSON format

Documents instead of lines. If relational databases store strings, MongoDB

stores documents. Unlike lines, documents can store information that is complex in

structure. The document can be represented as a repository of keys and values.

The key represents a simple label with which a certain piece of data is

associated. However, with all the differences, there is one feature that brings

MongoDB and relational databases together. In relational DBMS, there is such a

thing as a primary key. This concept describes a column that has unique values.

MongoDB has a unique identifier for each document called _id. And if you do not

explicitly specify its value, MongoDB will automatically generate a value for it.

2.8-picture – MongoDB with Node.js and Express

Each key is assigned a specific value. But here you also need to take into
account one feature: if there is a clearly delineated structure in relational databases,
where there are fields, and if a field does not matter, you can assign a NULL value
(depending on the settings of a particular database). In MongoDB, everything is
different. If a value is not associated with a key, this key is simply omitted in the
document and is not used.

 31

3 Realization software for Information system

3.1 Structure of software realization

For realization of Web-form Constructor “FormBuilder” were created special

software structure. In each The structure of the software is presented in 3.1-picture.

Figere 3.1 – Structure of software IS

It consists of:

– system software and OS;

– web-forms Constructor is implemented for Windows 7/8/10 and Linux

workstations and web-browsers, such as, Chrome, Opera, Internet Explorer, etc;

– programming tools;

– the program is implemented in the JavaScript programming language used

React open library on Node.js software platform, using Source code editor Visual

Studio Code with Single Page App technologies. Query language NoSQL and Data

Base Management System MongoDB.

– application software.

Web-forms Constructor on the administrator’s side includes:

– function “Prepare ready to use types of web-forms”. This function allows to

create web-forms with ready to use types;

SOFTWARE OF INFORMATION SYSTEM

System software

(OS)
Programming tools Application software

Work stations:

Windows 7/8/10

Servers:

Windows server

2016

Single Page

App, Visual

Studio

Visual Studio

IDE, Node js

software

platform

NoSQL

MongoDB

Administrator Client

Ready to

use types of

form

components

Finished

form

component

Choose

necessary

types of

form

Create

desired

web form

Add

additional

option in

form

ReactJS,

ECMAScript6

 32

– function “Prepare finished form component”. With this function,

Administrator of web-forms constructor can provide efficient state of web-forms for

using.

Web-forms Constructor on the client side includes:

– function “Choose necessary type of web-form”. With this feature, client can

choose necessary type and save time without creating a form right from the start;

– function “Create desired web-form”. Client can quickly create desired form

with self-requirements and ready to using;

– function “Add additional option in form”. This feature allows client add

some additional function for need web-form and can change in any moment of

creating.

3.2 Justification of the choice of programming languages

This diploma work is intended to work with web forms. The main task of the

development of web forms Constructor for the use of end customers. The system

should be easy to implement in various operating systems and web browsers.

Therefore, a programming language must ensure efficient operation and control the

content of a web page. To write a software product, a programming language and a

scripting language JavaScript and a query language NoSQL are chosen. Also used

stacks technology Node.js and library React.js.

Javascript is a simple and convenient language that allows you to easily

manage the contents of a web page, tracking and responding to various user actions.

Due to this, javascript has practically no competitors in its field of application and is

the first language, the study of which you need to start a web developer.

JavaScript is a prototype-oriented scripting programming language. It is a

dialect of ECMAScript. JavaScript is typically used as an embeddable language for

programmatically accessing application objects.

The main architectural features: dynamic typing, weak typing, automatic

memory management, prototype programming, functions as first-class objects.

After reviewing the most popular client-side languages, JavaScript was

selected for the following reasons:

– cross-platform;

– does not require additional software (Flash Player for ActionScript, .NET

Framework for Silverlight);

– javascript is an interpreted language, so to get the result you do not need to

carry out the compiling process, it is enough to reload the web page in the browser.

Modern JavaScript is a “secure” general-purpose programming language. It

does not provide low-level means of working with memory, processor, as it was

originally focused on browsers in which it is not required.

As for the other features, they depend on the environment in which JavaScript

is running. In the browser, JavaScript can do everything related to page manipulation,

interaction with the visitor and, to some extent, with the server:

 33

– create new HTML tags, delete existing ones, change element styles, hide,

show elements, etc;

– respond to the actions of the visitor, handle mouse clicks, move the cursor,

press the keyboard, etc;

– send requests to the server and upload data without reloading the page (this

technology is called "AJAX");

– receive and set cookies, request data, display messages;

– full HTML / CSS integration.

JavaScript is the most common way to create browser interfaces.

The main reason for this is its lightness and ability to support full stack All

thanks to the popularity of the NodeJs & MEAN technology stack. Large technology

companies are developing their product using javascript.

NodeJS is a software platform for many developers. This is a strong foundation

for all JS programmers. NodeJS helps create both desktop and server applications in

JavaScript, without the need for a browser.

React.js - a library from Facebook and Instagram, allows you to develop

scalable applications that meet all modern requirements that are changing so quickly.

ReactJS is reliable and stable. Simple interface design and implementation of a

virtual DOM are key reasons for its popularity.

SQL databases are specifically designed for specific data models and have

flexible schemas that allow you to develop modern applications. SQL databases are

widely used due to ease of development, functionality and performance at any scale.

They use various data models, including document, graph, search, using key-value

pairs and storing data in memory.

Traditional DBMSs are guided by the requirements of the ACID for the

transactional system: atomicity, consistency, isolation, durability.

3.3 Description of the developed application software

3.3.1 General Information. This program is written using JavaScript React

open library on Node.js software platform, using Source code editor Visual Studio

Code with Single Page App technologies. Query language SQL and Data Base

Management System Microsoft SQL Server 2017. For the normal functioning of the

program necessary Windows 7/8/10 and Linux operating systems and web-browsers,

such as, Chrome, Opera, Mozila, Microsoft Edge, Internet Explorer, etc.

3.3.2 Functional purpose. This program is intended for implementation on a

computer Web-forms Constructor “FormBuilder”. This system allows creating web-

forms for any tasks and solutions.

3.3.3 Used technical tools. When developing and debugging this diploma work,

the following technical tools were used:

– CPU: Intel(R) Core(TM) i5-7200U 2.50GHz;

– RAM: 8 Gb;

– Solid State Drive: 256 Gb;

 34

– Removable FlashDrive disk 32 Gb USB 3.1 Type-C;

– Network adapter Intel wireless-AC9560;

– Video adapter: NVIDIA GeForce GTX 1060;

– printer Samsung dj 940c;

– standard keyboard and mouse.

3.3.4 Call and Download. The program is called by web-browser, such as

Google Chrome. After that the path in the address bar is specified as

https://www.formbuilder.kz. And this address provide using system web-form

Constructor.

3.3.5 Input Data. The input data of the diploma work are structure of existing

web-application constructor and web-form constructor.

3.3.6 Output Data. The output data of the diploma work ready to use and

efficient web-forms.

3.4 Realization of Information system.Creating a single page application

3.4.1 Creating a Node.js Application in Visual Studio. Creating a Node.js and

React application in Visual Studio. In Visual Studio, you can easily create a Node.js

project and use IntelliSense and other built-in functions that support Node.js.

– NodeJS is a Server-side technology that helps generate HTML returned to

the user's browser, it is similar to other technologies like PHP, Java Servlet / JSP, ...

The difference here is that NodeJS uses Javascript to write code, so you only need to

know Javascript and you can program applications from 2 sides of Client & Server.

React is an interface platform for creating user interfaces. JSX is a JavaScript syntax

extension commonly used with React to describe user interface elements. JSX code

needs to be converted to plain javascript code before it can be run in a browser.

webpack integrates javascript files so that they can be run in a browser. It can

transform or pack other resources and assets. It is often used to tell the compiler, such

as Babel or TypeScript, to convert JSX or TypeScript code into regular JavaScript

code. Below in figure 3.3 has shown how to start Node.js development in Visual

Studio.

Figure 3.3 – "Node.js Development" workload

3.4.1 Create React App. The Create React App is a convenient environment for

learning React and the best way to start creating a new one-page application on

React. It sets up your development environment, so you can use the latest JavaScript

https://www.formbuilder.kz/

 35

features, provide design convenience, and optimize your application for production.

You will need Node > = 6 and npm > = 5.2. To create a project, run. In figure 3.5

presented.

 Figure 3.5 – create-reat-app comand

Below has shown main pages in FormBuilder application in the figure 3.6,

figure 3.7 and figure 3.8. In the table 3.1 presented main form parametres.

Figure 3.6 – Main page FormBuilder program

Table 3.1 – Forms parametres

№ Name Type Description

1 form_action string URL path to submit the form

2 action_name string Defines form submit button text. Defaults to "Submit"

3 form_method string Verb used in the form submission.

4 onSubmit function Invoke submit data, if exists will override form post.

5 back_action string URL path to go back if needed.

6 variables object Key/value object for Signature variable replacement.

 36

 Figure 3.7 – Form builder drag and drop form generator

Figure 3.8 – Custom form examplе

Below in figure 3.9 has shown how to run the program in PowerShell

 37

Figure 3.9 – Run program with comand npm start

Next in figure 3.10 presented how to connect to MongoDB. Server

MongoDB: localhost:27017 and program ready at http: //localhost:3000

Figure 3.10 – MongoDB connection

Saved JSON data has shown in figure 3.9 components has saved.

Figure 3.9 – MongoDB saved JSON

 38

CONCLUSION

Often, when creating websites, it becomes necessary to install a web form on a

page (for example, it can be a user registration form, a feedback form, an online

order, etc.). This is necessary to enable resource users to contact the site’s

administration send any data. Creating web forms will increase the functionality of

the site as a whole.

Web-forms are one of the most important tools used by companies and

organizations. With their help, you can get the opinions of users and conduct a

variety of polls. Creating forms using a specially designed for this case constructor is

much easier and faster. They are able to create for a few clicks useful and well-

designed projects.

Constructor of Web-forms is a simple tool that allows you to save valuable

time and in a few clicks create a modern form, the code of which can be copied and

installed on external sites. Constructor allows you to visually describe the

composition of the details that will be placed on the form, and choose the option of

placing the command panel.

The first part of the work is devoted to describing the basics of working with

web applications, especially, web forms. Researching the structure, elements and

main functions of web forms. Also shows special types of web-forms, which often

used.

The second part describes the Information System. The main technologies and

tools for the implementation of the information system. Shows the effectiveness,

advantages and disadvantages of each software tool. There is a rationale for the

choice of platforms for the development and implementation of the program.

The third part is the implementation of the program. Demonstration of the main

functionality and options of the web-forms constructor, by step-by-step program

description. Using software tools such as: Single page application, Visual Studio

Code, Node.js software platform, JavaScript library React.js.

 39

REFERENCES

1 Semmy P. Learning Web App Development / South-Western, Cengage

Learning – 2014. – P. 106-168.

2 Douglas J. R. Programming Microsoft Web Forms (Developer Reference) /

Wiley – 2006. – 298 p.

3 Emmit S. SPA Design and Architecture: Understanding Single Page Web

Applications / Wrox – 2015. – 98 p. // Electronic version in web-site

https://www.amazon.com/SPA-Design-Architecture-Understanding-

Applications/dp/1617292435

4 Bruno J. D., Mithun S., Jason K. Web Development with Node Third Edition

/ Apress – 2017. – 72 p.

5 Caroline J., Gerry G., Steve K. Forms that Work: Designing Web Forms for

Usability Interactive Technologies 1st Edition / Packt – 2008. – 295 p.

6 Alex M. JavaScript Web Applications / O'Reilly Media – 2011. – 295 p. //

Electronic version in web-site https://www.oreilly.com/library/view/javascript-web-

applications/9781449308216/

7 David H. Node Web Development Second Edition / Packt – 2011. – 35 p. //

Electronic version in web-site https://ru.scribd.com/book/253047202/Node-Web-

Development

8 Eric B. Full-Stack JavaScript Development: Develop, Test and Deploy Node

/ Red Hat Press – 2016. – P. 164-300.

9 Mike C., Marc H., TJ Holowaychuk, Nathan R. Node.js in Action 1st

Edition / Manning – 2011. – 235 p. // Electronic version in web-site //

https://www.manning.com/books/node-js-in-action

10 Japs Ph., Dewey B. Building Web Applications with Visual Studio / Apress

– 2011. – P. 244-357.

11 Alex B., Eve P. Learning React: Functional Web Development / OReilly –

2017. – P. 164-300.

12 Prathamesh S. ReactJS by Example - Building Modern Web Applications

with React / OReilly – 2016. – 125 p.

13 Eelco P., Peter M., David H. Core Basics / McGraw-Hill Education – 2013.

– 301 p.

14 Deepak V. MS SQL Server for Development / McGraw-Hill Education –

2013. – 301 p. // Electronic version in web-site //

https://books.goalkicker.com/MicrosoftSQLServerBook/

 15 Stoyan S. React: Up & Running: Building Web Apps / / O'Reilly Media –

2016. – P. 87-193.

https://www.amazon.com/SPA-Design-Architecture-Understanding-Applications/dp/1617292435
https://www.amazon.com/SPA-Design-Architecture-Understanding-Applications/dp/1617292435
https://www.oreilly.com/library/view/javascript-web-applications/9781449308216/
https://www.oreilly.com/library/view/javascript-web-applications/9781449308216/
https://ru.scribd.com/book/253047202/Node-Web-Development
https://ru.scribd.com/book/253047202/Node-Web-Development
https://www.manning.com/books/node-js-in-action
https://books.goalkicker.com/MicrosoftSQLServerBook/

 40

Appendix A

A complete react form builder that interfaces with a json endpoint to load and

save generated forms.

Figure A.1 – Main form builder page

Figure A.2 – Editing items in form builder page

 41

Appendix B

Main codes in the application.

Basic usage
var React = require('react');
var FormBuilder = require('react-form-builder2');

React.render(
 <FormBuilder.ReactFormBuilder />,
 document.body
)

Form properties
var items = [{
 key: 'Header',
 name: 'Header Text',
 icon: 'fa fa-header',
 static: true,
 content: 'Placeholder Text...'
},
{
 key: 'Paragraph',
 name: 'Paragraph',
 static: true,
 icon: 'fa fa-paragraph',
 content: 'Placeholder Text...'
}];

<FormBuilder.ReactFormBuilder
 url='path/to/GET/initial.json'
 toolbarItems={items}
 saveUrl='path/to/POST/built/form.json' />

React form generator
var React = require('react');
var FormBuilder = require('react-form-builder2');

React.render(
 <FormBuilder.ReactFormGenerator
 form_action="/path/to/form/submit"
 form_method="POST"
 task_id={12} // Used to submit a hidden variable with the id to the form from

the database.
 answer_data={JSON_ANSWERS} // Answer data, only used if loading a pre-

existing form with values.
 authenticity_token={AUTH_TOKEN} // If using Rails and need an auth token to

submit form.
 data={JSON_QUESTION_DATA} // Question data
 />,
 document.body
)

 42

Appendix B continuation

ReactJS code ~/nodeModules/lib/index.js
'use strict';
var _createClass = function () { function defineProperties(target, props) { for (var i = 0;
i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable =
descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor)
descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }
return function (Constructor, protoProps, staticProps) { if (protoProps)
defineProperties(Constructor.prototype, protoProps); if (staticProps)
defineProperties(Constructor, staticProps); return Constructor; }; }();
var _react = require('react');
var _react2 = _interopRequireDefault(_react);
var _reactDnd = require('react-dnd');
var _reactDndHtml5Backend = require('react-dnd-html5-backend');
var _reactDndHtml5Backend2 = _interopRequireDefault(_reactDndHtml5Backend);
var _preview = require('./preview');
var _preview2 = _interopRequireDefault(_preview);
var _toolbar = require('./toolbar');
var _toolbar2 = _interopRequireDefault(_toolbar);
var _form = require('./form');
var _form2 = _interopRequireDefault(_form);
var _store = require('./stores/store');
var _store2 = _interopRequireDefault(_store);
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj
}; }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function"); } }
function _possibleConstructorReturn(self, call) { if (!self) { throw new
ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call
&& (typeof call === "object" || typeof call === "function") ? call : self; }
function _inherits(subClass, superClass) { if (typeof superClass !== "function" &&
superClass !== null) { throw new TypeError("Super expression must either be null or a
function, not " + typeof superClass); } subClass.prototype = Object.create(superClass &&
superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true,
configurable: true } }); if (superClass) Object.setPrototypeOf ?
Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } /**
var ReactFormBuilder = function (_React$Component) {
 _inherits(ReactFormBuilder, _React$Component);
 function ReactFormBuilder(props) {
 _classCallCheck(this, ReactFormBuilder);
 var _this = _possibleConstructorReturn(this, (ReactFormBuilder.__proto__ ||
Object.getPrototypeOf(ReactFormBuilder)).call(this, props));

 _this.state = {
 editMode: false,
 editElement: null
 };
 return _this;
 }
 _createClass(ReactFormBuilder, [{
 key: 'editModeOn',
 value: function editModeOn(data, e) {
 e.preventDefault();
 e.stopPropagation();
 if (this.state.editMode) {
 this.setState({ editMode: !this.state.editMode, editElement: null });
 } else {
 this.setState({ editMode: !this.state.editMode, editElement: data });
 }
 }
 }, {

 43

Appendix B continuation

key: 'manualEditModeOff',
 value: function manualEditModeOff() {
 if (this.state.editMode) {
 this.setState({
 editMode: false,
 editElement: null
 });
 }
 }
 }, {
 key: 'render',
 value: function render() {
 var toolbarProps = {};
 if (this.props.toolbarItems) {
 toolbarProps.items = this.props.toolbarItems;
 }
 return _react2.default.createElement(
 'div',
 null,
 _react2.default.createElement(
 'div',
 { className: 'react-form-builder clearfix' },
 _react2.default.createElement(
 'div',
 null,
 _react2.default.createElement(_preview2.default, { files: this.props.files,
 manualEditModeOff: this.manualEditModeOff.bind(this),
 parent: this,
 data: this.props.data,
 url: this.props.url,
 saveUrl: this.props.saveUrl,
 onLoad: this.props.onLoad,
 onPost: this.props.onPost,
 editModeOn: this.editModeOn,
 editMode: this.state.editMode,
 variables: this.props.variables,
 editElement: this.state.editElement }),
 _react2.default.createElement(_toolbar2.default, toolbarProps)
)
)
);
 }
 }]);

 return ReactFormBuilder;
}(_react2.default.Component);

var FormBuilders = {};

FormBuilders.ReactFormBuilder = (0,
_reactDnd.DragDropContext)(_reactDndHtml5Backend2.default)(ReactFormBuilder);
FormBuilders.ReactFormGenerator = _form2.default;
FormBuilders.ElementStore = _store2.default;
module.exports = FormBuilders;

 44

Appendix C

Main code view the index.html.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <title>React Form Builder</title>
 <link href="~/Content/FormBuilder/font-awesome.min.css" rel="stylesheet" />
 <link href="~/Content/FormBuilder/bootstrap.min.css" rel="stylesheet" />
 <link href="~/nodeModules/react-form-builder2/dist/app.css" rel="stylesheet" />
</head>
<body>
 <script>
 var FORM_ACTION = "/testing";
 var FORM_METHOD = "POST";
 </script>

 <div class="clearfix" style="margin: 10px; width:70%">
 <h4 class="pull-left">Preview</h4>
 <button class="btn btn-primary pull-right" style="margin-right: 10px" id="button-
preview">Preview Form</button>
 <div class="modal" id="preview-dialog">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-body">
 <div id="form-generator"></div>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-dismiss="modal"
id="button-close">Close</button>
 </div>
 </div>
 </div>
 </div>
 </div>
 <div id="form-builder"></div>
 <!-- Load React. -->
 <script src="https://unpkg.com/react@16/umd/react.development.js" crossorigin></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"
crossorigin></script>
 <!-- Load our React component. -->
 <script src="~/nodeModules/react-form-builder2/dist/app.js"></script>
 <script src="~/Scripts/FormBuilder/form-generator.js"></script>
 <script src="~/Scripts/FormBuilder/form-builder.js"></script>
</body>
</html>

Figure C.1 – FormBuilder.cshtml

